

SWITCHING REGULATOR CONTROL CIRCUIT

■ GENERAL DESCRIPTION

The **NJM3524** of regulating pulse width modulators contains all of the control circuitry necessary to implement switching regulators of either polarity converters and voltage doublers, as well as other power control applications. This device includes a 5V voltage regulator capable of supplying up to 50mA to external circuitry a control amplifier, an oscillator, a pulse width modulator, a phase splitting flip-flop, dual alternating output switch transistors, and current limiting and shut-down circuitry. Both the regulator output transistor and each output switch are internally current limited and, to limit junction temperature, an internal thermal shut-down circuit is employed.

■ PACKAGE OUTLINE

NJM3524D

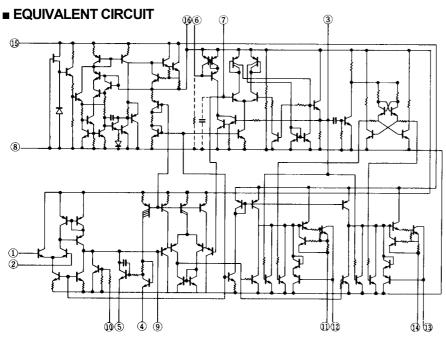
NJM3524M

NJM3524V

■ FEATURES

- Operating Voltage (8V to 40V)
- Complete PWM Power Control Circuitry
- Uncommitted Outputs for Single-Ended or Pash-Pull Appli Cutions
- Low Stand by Current
- Package Outline

DIP16, DMP16, SSOP16


• Bipolar Technology

■ RECOMMEND OPERATING CONDITION

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating Voltage	V ⁺	8	20	40	V
Output Reference Current	I _{REF}	0	-	50	mΑ
Timing Resistance	R_T	1.8	-	100	kΩ
Timing Capacitor	C_T		-	0.1	μF
Operating Temperature Range	Topr	-20	25	75	°C

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a = 25^{\circ}C)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	40	V
Output Current	lo	100	mA
Output Reference Current	I _{REF}	50	mA
Power Dissipation	P _D	(DIP16) 700 (DMP16) 300	mW mW
Operating Temperature Range	T _{opr}	-20 to + 75	°C
Storage Temperature Range	T _{stg}	-40 to +125	°C

■ ELECTRICAL CHARACTERISTICS

Electrical characteristics over recommended operating free-air temperature range, V^+ = 20V, f = 20kHz (unless otherwise noted).

Reference Section

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Voltage	V_{REF}	V ⁺ = 20v	4.6	5.0	5.4	V
Line Regulation	$\Delta V_{REF} - V^{\dagger}$	$V^{+} = 8 \text{ to } 40V$	-	10	30	mV
Load Regulation	ΔV_{REF} - I_{REF}	$V^{+} = 10V$, $I_{REF} = 0$ to $20mA$	-	20	50	mV
Ripple Rejection	RR	$V^{+} = 20V, f = 120Hz$	-	66	-	dB
Temperature Coefficient	T. C.	Ta = -20 to +75°C	-	-1	-	mV/°C
Short Circuit Output Current	I _{REF S}		-	100	_	mA

Error Amplifier Section

Input Offset Voltage	V _{IO}	V _{IC} = 2.5V	-	2	10	mV
Input Bias Current	I _B (1)	V _{IC} = 2.5V	-	2	10	μA
Open Loop Voltage Gain	A _V		60	80	-	dB
Input Common Mode Voltage Range	V _{CM}	T _a = 25°C	1.8	-	3.4	V
Common Mode Rejection Ratio	CMR		-	70	-	dB
Unity Gain Bandwidth	-		-	3	-	MHz
Output Voltage Swing	-		0.5	-	3.8	V

Oscillator Section

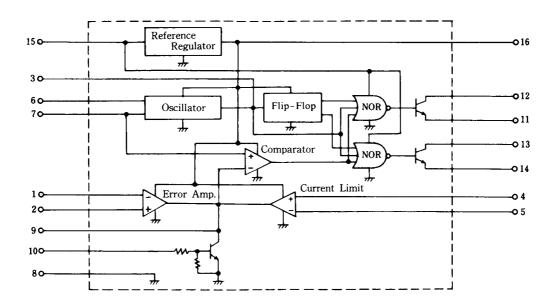
Frequency	f _{OSC}	$C_T = 0.01 \mu F$, $R_T = 2k\Omega$	-	30	-	kHz
Frequency Change with Voltage	-	V ⁺ = 8 to 40V	-	-	1	%
Frequency Change with Temperature	-	$T_a = -20 \text{ to } +75^{\circ}\text{C}$	-	-	3	%
Output Pulse Width (Pin 3)	-	$C_T = 0.01 \mu F$	-	0.5	-	μS
Output Amplitude (Pin 3)	-		-	3.5	-	V

Com	narator	Section	ı
COIL	paratur	Section	ı

Maximum Duty Cycle	-		0	-	45	%
Input Threshold (Pin 9)	V_{IH}	"0" duty cycle	-	1.0	-	V
Input Threshold (Pin 9)	V_{IH}	"Max" duty cycle	-	3.5	-	V
Input Bias Current	I _B (2)		-	1	1	μA

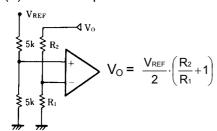
Current Limiting Section

Input Voltage Range	-		-0.7	-	+1.0	V
Sense Voltage	-	V ₍₂₎ - V ₍₁₎ ≥ 50mV	180	200	220	mV
Sense Voltage Temperature Coefficient	-		-	0.2	-	mV/°C

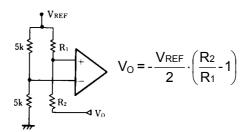

Output Section

Collector-Emitter Breakdown Voltage	V _{CER}		40	-	-	V
Collector Leakage Current	I _{CER}	V _{CE} = 40V	-	0.1	50	μΑ
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _O = 50mA	-	1	2	V
Emitter Output Voltage	-	$V^+ = 20V, I_F = -250\mu A$	17	18	-	V
Turn-off Voltage Rise Time	Tr	$R_C = 2k\Omega$	-	0.2	-	μS
Turn-on Voltage Fall Time	Tı	$R_C = 2k\Omega$	-	0.1	-	μS

Total Device

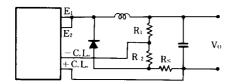

Standby Current	ΙQ	V+ = 40V, Pin ₍₂₎ = 2V	-	8	10	mA
		1, 4, 7, 8, 9, 11, 14 = GND				
		All Other Inputs and Outputs Open				

■ BLOCK DIAGRAM



■ ERROR AMPLIFIER BIAS CIRCUITS

(A) Positive Output

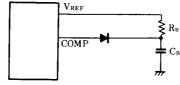


(B) Negative Output

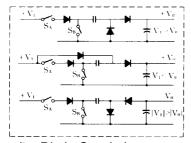
■ CURRENT LIMIT

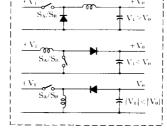
- (a) Take the detection output from the ground line side, because the input voltage range is -0.7V to +1.0V.
- (b) The sensing voltage is 200mV typical.

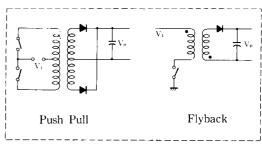
$$I_{O(MAX)} = \frac{1}{Rs} (V_{SENSE} + \frac{R_2}{R_1 + R_2} V_0)$$


$$V_{SENSE}$$

$$I_{OS} = \frac{V_{SENSE}}{R_S}$$


■ SOFT START METHOD


It is possible that the output stage is broken due to a wrong operation of circuits simultaneously when supply voltage was applied. This failure can be prevented by setting the error amplifier output to a low level for a certain time as shown in the right figure.


In this case, the soft start time is determined by the time constant of R_B and C_B.

OUTPUT CONFIGURATIONS

Capacitor-Diode-Coupled Voltage Multiplier Output stage

Single-Ended Inductor Circuit

Transformer-Coupled Outputs

■ TYPICAL APPLICATIONS

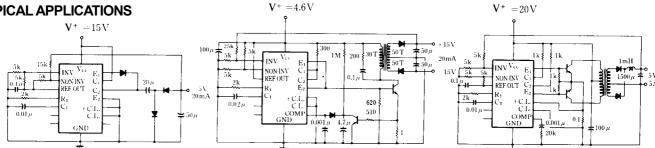
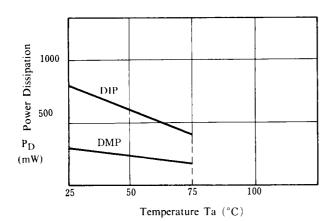
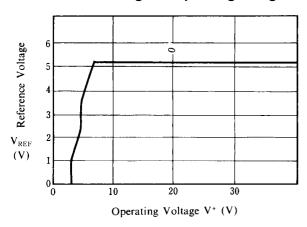
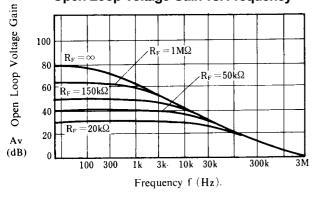



Fig. 1 Capacitor-Diode Output Circuit

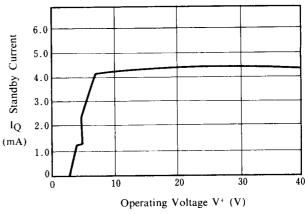
Fig. 2 Flyback Converter Circuit

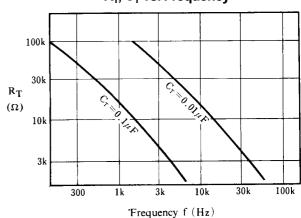

Fig. 3 Push-Pull **Transformer-Coupled Circuit**

■ POWER DISSIPATION VS. AMBIENT TEMPERATURE



■ TYPICAL CHARACTERISTICS


Reference Voltage vs. Operating Voltage


Open Loop Voltage Gain vs. Frequency

Standby Current vs. Operating Voltage

R_T, C_T vs. Frequency

[CAUTION]
The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.